Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Pediatr Blood Cancer ; : e30996, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637852

RESUMO

BACKGROUND: Compared to other ethnicities, Hispanics/Latinos (H/L) have a high incidence of acute lymphoblastic leukemia (ALL), enrichment of unfavorable ALL genetic subtypes, and worse outcomes, even after correcting for socioeconomic factors. We previously demonstrated increased incidence of the high-risk genetic drivers IKZF1 deletion and IGH::CRLF2 rearrangement in H/L compared to non-H/L children with B-ALL. Here in an expanded pediatric cohort, we sought to identify novel genetic drivers and secondary genetic alterations in B-ALL associated with H/L ethnicity. PROCEDURE: Comprehensive clinicopathologic data from patients with B-ALL treated from 2016 to 2020 were analyzed. Subtype was determined from karyotype, fluorescence in situ hybridization (FISH), chromosome microarray (CMA), and our next-generation sequencing (NGS) panel (OncoKids). Non-driver genetic variants were also examined. p-Values less than .05 (Fisher's exact test) were considered significant. RESULTS: Among patients with B-ALL at diagnosis (n = 273), H/L patients (189, 69.2%) were older (p = .018), more likely to present with CNS2 or CNS3 disease (p = .004), and NCI high-risk ALL (p = .014) compared to non-H/L patients. Higher incidence of IGH::CRLF2 rearrangement (B-ALL, BCR::ABL1-like, unfavorable; p = .016) and lower incidence of ETV6::RUNX1 rearrangement (favorable, p = .02) were also associated with H/L ethnicity. Among secondary (non-subtype-defining) genetic variants, B-ALL in H/L was associated with IKFZ1 deletion alone (p = .001) or with IGH::CRLF2 rearrangement (p = .003). The IKZF1PLUS profile (IKZF1 deletion plus CDKN2A/2Bdel, PAX5del, or P2RY8::CRLF2 rearrangement without DUX4 rearrangement) was identified as a novel high-risk feature enriched in H/L patients (p = .001). CONCLUSIONS: Our study shows enrichment of high-risk genetic variants in H/L B-ALL and raises consideration for novel therapeutic targets.

2.
Genet Med ; 26(4): 101054, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38349293

RESUMO

Cytogenomic analyses of acquired clonal chromosomal abnormalities in neoplastic blood, bone marrow, and/or lymph nodes are instrumental in the clinical management of patients with hematologic neoplasms. Cytogenetic analyses assist in the diagnosis of such disorders and can provide important prognostic information. Furthermore, cytogenetic studies can provide crucial information regarding specific genetically defined subtypes of these neoplasms that may have targeted therapies. At time of relapse, cytogenetic analysis can confirm recurrence of the original neoplasm, detect clonal disease evolution, or uncover a new unrelated neoplastic process. This section deals specifically with the technical standards applicable to cytogenomic studies of acquired clonal chromosomal abnormalities in neoplastic blood, bone marrow, and/or lymph nodes. This updated Section E6.1-6.6 supersedes the previous Section E6 in Section E: Clinical Cytogenetics of the American College of Medical Genetics and Genomics Technical Standards for Clinical Genetics Laboratories.


Assuntos
Genética Médica , Neoplasias , Humanos , Medula Óssea/patologia , Laboratórios , Aberrações Cromossômicas , Neoplasias/diagnóstico , Linfonodos , Genômica
3.
J Mol Diagn ; 26(5): 337-348, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360210

RESUMO

Several in silico annotation-based methods have been developed to prioritize variants in exome sequencing analysis. This study introduced a novel metric Significance Associated with Phenotypes (SAP) score, which generates a statistical score by comparing an individual's observed phenotypes against existing gene-phenotype associations. To evaluate the SAP score, a retrospective analysis was performed on 219 exomes. Among them, 82 family-based and 35 singleton exomes had at least one disease-causing variant that explained the patient's clinical features. SAP scores were calculated, and the rank of the disease-causing variant was compared with a known method, Exomiser. Using the SAP score, the known causative variant was ranked in the top 10 retained variants for 94% (77 of 82) of the family-based exomes and in first place for 73% of these cases. For singleton exomes, the SAP score analysis ranked the known pathogenic variants within the top 10 for 80% (28 of 35) of cases. The SAP score, which is independent of detected variants, demonstrates comparable performance with Exomiser, which considers both phenotype and variant-level evidence simultaneously. Among 102 cases with negative results or variants of uncertain significance, SAP score analysis revealed two cases with a potential new diagnosis based on rank. The SAP score, a phenotypic quantitative metric, can be used in conjunction with standard variant filtration and annotation to enhance variant prioritization in exome analysis.


Assuntos
Bases de Dados Genéticas , Testes Genéticos , Humanos , Sequenciamento do Exoma , Estudos Retrospectivos , Fenótipo
4.
Am J Hematol ; 99(4): 642-661, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38164980

RESUMO

Optical Genome Mapping (OGM) is rapidly emerging as an exciting cytogenomic technology both for research and clinical purposes. In the last 2 years alone, multiple studies have demonstrated that OGM not only matches the diagnostic scope of conventional standard of care cytogenomic clinical testing but it also adds significant new information in certain cases. Since OGM consolidates the diagnostic benefits of multiple costly and laborious tests (e.g., karyotyping, fluorescence in situ hybridization, and chromosomal microarrays) in a single cost-effective assay, many clinical laboratories have started to consider utilizing OGM. In 2021, an international working group of early adopters of OGM who are experienced with routine clinical cytogenomic testing in patients with hematological neoplasms formed a consortium (International Consortium for OGM in Hematologic Malignancies, henceforth "the Consortium") to create a consensus framework for implementation of OGM in a clinical setting. The focus of the Consortium is to provide guidance for laboratories implementing OGM in three specific areas: validation, quality control and analysis and interpretation of variants. Since OGM is a complex technology with many variables, we felt that by consolidating our collective experience, we could provide a practical and useful tool for uniform implementation of OGM in hematologic malignancies with the ultimate goal of achieving globally accepted standards.


Assuntos
Neoplasias Hematológicas , Humanos , Hibridização in Situ Fluorescente , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Cariotipagem , Mapeamento Cromossômico
5.
J Mol Diagn ; 26(1): 49-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981088

RESUMO

Studies have shown the power of transcriptome sequencing [RNA sequencing (RNA-Seq)] in identifying known and novel oncogenic drivers and molecular subtypes of B-acute lymphoblastic leukemia (B-ALL). The current study investigated whether the clinically validated RNA-Seq assay, coupled with a custom analysis pipeline, could be used for a comprehensive B-ALL classification. Following comprehensive clinical testing, RNA-Seq was performed on 76 retrospective B-ALL cases, 28 of which had known and 48 had undetermined subtype. Subtypes were accurately identified in all 28 known cases, and in 38 of 48 unknown cases (79%). The subtypes of the unknown cases included the following: PAX5alt (n = 12), DUX4-rearranged (n = 6), Philadelphia chromosome-like (n = 5), low hyperdiploid (n = 4), ETV6::RUNX1-like (n = 3), MEF2D-rearranged (n = 2), PAX5 P80R (n = 2), ZEB2/CEBP (n = 1), NUTM1-rearranged (n = 1), ZNF384-rearranged (n = 1), and TCF3::PBX1 (n = 1). In 15 of 38 cases (39%), classification based on expression profile was corroborated by detection of subtype-defining oncogenic drivers missed by clinical testing. RNA-Seq analysis also detected large copy number abnormalities, oncogenic hot-spot sequence variants, and intragenic IKZF1 deletions. This pilot study confirms the feasibility of implementing an RNA-Seq workflow for clinical diagnosis of molecular subtypes in pediatric B-ALL, reinforcing that RNA-Seq represents a promising global genomic assay for this heterogeneous leukemia.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Transcriptoma , Criança , Humanos , Transcriptoma/genética , Estudos Retrospectivos , Laboratórios Clínicos , Projetos Piloto , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Genômica
6.
Am J Surg Pathol ; 48(2): 194-203, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37946548

RESUMO

Sertoli-Leydig cell tumors (SLCTs) are currently classified into 3 molecular subtypes: DICER1 -mutant (younger patient age), FOXL2 -mutant, and DICER1/FOXL2 -wildtype. However, it is not clear whether all pediatric SLCTs are DICER1 -mutant molecular subtypes and whether other molecular genetic aberrations besides DICER1 are involved in the pathogenesis and prognosis of these tumors. We studied comprehensive data for 8 cases of pediatric SLCTs, including clinicopathological features, pan-cancer-targeted next-generation sequencing/OncoKids panel, and chromosomal microarray analysis, to further analyze the correlation among clinicopathological features, molecular genetic aberrations, and prognosis. The ages of the patients ranged from 4 to 16 years (median, 14 y). Seven cases were moderately differentiated, and one was poorly differentiated with heterologous mesenchymal elements. Two cases had heterologous epithelium or retiform elements. Follow-up was available for all 8 patients (median, 49.5 mo). Seven patients were alive without evidence of recurrence or metastasis, and only case 5 developed metastases (synchronous bilateral pulmonary tumors with rhabdomyosarcomatous differentiation). All 8 tumors were found to harbor somatic hotspot DICER1 mutations, and 5 patients carried germline DICER1 mutations (2 of them had the phenotype of DICER1 syndrome). Together with recent studies, the DICER1 mutation frequency is 100% in pediatric SLCTs (n=27, age≤16 y). Copy number alterations were detected in 3 tumors; the only recurrent copy number alterations was the gain of whole chromosome 6 in case 5 and case 8. This is the first report describing clinicopathological features and molecular alterations in pediatric SLCTs. Our results demonstrate that all pediatric SLCTs belong to the DICER1 -mutant molecular subtype, highlighting that somatic hotspot DICER1 mutation detection has high sensitivity (100%) for the auxiliary diagnosis of pediatric SLCTs (age ≤16 y). Some pediatric SLCTs harbor molecular genetic aberrations other than DICER1 mutation, and their significance needs further study.


Assuntos
Neoplasias Ovarianas , Tumor de Células de Sertoli-Leydig , Masculino , Feminino , Humanos , Criança , Adolescente , Tumor de Células de Sertoli-Leydig/genética , Tumor de Células de Sertoli-Leydig/patologia , Neoplasias Ovarianas/patologia , Mutação , Ribonuclease III/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Helicases DEAD-box/genética
7.
Pediatr Neurol ; 150: 50-56, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979304

RESUMO

BACKGROUND: Around 40% of individuals with epilepsy have an underlying identifiable genetic etiology. Common methods for epilepsy genetic testing are chromosomal microarray (CMA) and epilepsy-genes sequencing (EGS). Historically, CMA was the first-line test for patients with epilepsy, but recent studies have shown that EGS has a superior diagnostic yield. To further optimize testing algorithms for epilepsy, we compared these tests' diagnostic yields and explored how they are influenced by age of onset and phenotype complexity. METHODS: Genetic test results from a cohort of patients with epilepsy were used to determine the diagnostic yield of CMA (n = 366) versus EGS (n = 370) for genetic epilepsy etiologies. Further analysis examined the probability of diagnostic results based on age of seizure onset and patients' phenotype complexity. RESULTS: For patients who underwent CMA, causative variants were found in 28 of 366 cases (7.7%), and 60 of 366 patients (16.4%) had at least one variant of uncertain significance (VUS). For EGS, 65 of 370 (17.6%) cases had causative variants, whereas 155 of 370 (41.9%) had at least one VUS. EGS had a significantly higher diagnostic yield than CMA (odds ratio [OR] = 2.63, P < 0.001). This difference in diagnostic yield was further pronounced among patients with infantile seizure onset (OR = 4.69, P < 0.001) and patients with additional neurological findings (OR = 2.99, P < 0.001). CONCLUSION: To minimize the time and resources required to reach a diagnosis, clinicians and insurers alike should consider using EGS as an initial diagnostic tool.


Assuntos
Epilepsia , Criança , Humanos , Epilepsia/diagnóstico , Epilepsia/genética , Testes Genéticos/métodos , Análise em Microsséries , Fenótipo , Convulsões/genética
8.
Mod Pathol ; 37(2): 100385, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992967

RESUMO

Accurate diagnosis and treatment of hepatocellular neoplasm, not otherwise specified (HCN-NOS), poses significant challenges. Our study aimed to investigate the clinicopathologic and genomic similarities and differences between HCN-NOS and hepatoblastoma (HB) to guide diagnostic and treatment strategies. The clinicopathologic characteristics of 16 patients with HCN-NOS and 23 patients with HB were compared. Molecular studies, including the OncoKids DNA- and RNA-based next-generation sequencing panel, chromosomal microarray, and targeted Sanger sequencing analyses of CTNNB1 and TERT promoters, were employed. We found that patients with HCN-NOS were older (P < .001) and more frequently classified as high risk (P < .01), yet they showed no significant differences in alpha fetoprotein levels or survival outcomes compared with those with HB. HCN-NOS and HB had a comparable frequency of sequence variants, with CTNNB1 mutations being predominant in both groups. Notably, TERT promoter mutations (37.5%) and rare clinically significant variants (BRAF, NRAS, and KMT2D) were exclusive to HCN-NOS. HCN-NOS demonstrated a higher prevalence of gains in 1q, encompassing the MDM4 locus (17/17 vs 11/24; P < .001), as well as loss/loss of heterozygosity (LOH) of 1p (11/17 vs 6/24; P < .05) and chromosome 11 (7/17 vs 1/24; P < .01) when compared with HB. Furthermore, the recurrent loss/LOH of chromosomes 3, 4p, 9, 15q, and Y was only observed in HCN-NOS. However, no significant differences were noted in gains of chromosomes 2, 8, and 20, or loss/LOH of 4q and 11p between the 2 groups. Notably, no clinically significant gene fusions were detected in either group. In conclusion, our study reveals that HCN-NOS exhibits high-risk clinicopathologic features and greater structural complexity compared with HB. However, patients with HCN-NOS exhibit comparable alpha fetoprotein levels at diagnosis, CTNNB1 mutation rates, and survival outcomes when subjected to aggressive treatment, as compared with those with HB. These findings have the potential to enhance diagnostic accuracy and inform more effective treatments for HCN-NOS.


Assuntos
Carcinoma Hepatocelular , Hepatoblastoma , Neoplasias Hepáticas , Humanos , Hepatoblastoma/genética , Hepatoblastoma/patologia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , alfa-Fetoproteínas , Genômica , Proteínas Proto-Oncogênicas , Proteínas de Ciclo Celular
9.
J Mol Diagn ; 26(2): 127-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008288

RESUMO

This study reports the development of an exome capture-based RNA-sequencing assay to detect recurring and novel fusions in hematologic, solid, and central nervous system tumors. The assay used Twist Comprehensive Exome capture with either fresh or formalin-fixed samples and a bioinformatic platform that provides fusion detection, prioritization, and downstream curation. A minimum of 50 million uniquely mapped reads, a consensus read alignment/fusion calling approach using four callers (Arriba, FusionCatcher, STAR-Fusion, and Dragen), and custom software were used to integrate, annotate, and rank the candidate fusion calls. In an evaluation of 50 samples, the number of calls varied substantially by caller, from a mean of 24.8 with STAR-Fusion to 259.6 with FusionCatcher; only 1.1% of calls were made by all four callers. Therefore a filtering and ranking algorithm was developed based on multiple criteria, including number of supporting reads, calling consensus, genes involved, and cross-reference against databases of known cancer-associated or likely false-positive fusions. This approach was highly effective in pinpointing known clinically relevant fusions, ranking them first in 47 of 50 samples (94%). Detection of pathogenic gene fusions in three diagnostically challenging cases highlights the importance of a genome-wide and nontargeted method for fusion detection in pediatric cancer.


Assuntos
Exoma , Neoplasias , Criança , Humanos , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Software , RNA , Fusão Gênica
10.
Biomedicines ; 11(12)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38137484

RESUMO

Structural variations (SVs) play a key role in the pathogenicity of hematological malignancies. Standard-of-care (SOC) methods such as karyotyping and fluorescence in situ hybridization (FISH), which have been employed globally for the past three decades, have significant limitations in terms of resolution and the number of recurrent aberrations that can be simultaneously assessed, respectively. Next-generation sequencing (NGS)-based technologies are now widely used to detect clinically significant sequence variants but are limited in their ability to accurately detect SVs. Optical genome mapping (OGM) is an emerging technology enabling the genome-wide detection of all classes of SVs at a significantly higher resolution than karyotyping and FISH. OGM requires neither cultured cells nor amplification of DNA, addressing the limitations of culture and amplification biases. This study reports the clinical validation of OGM as a laboratory-developed test (LDT) according to stringent regulatory (CAP/CLIA) guidelines for genome-wide SV detection in different hematological malignancies. In total, 60 cases with hematological malignancies (of various subtypes), 18 controls, and 2 cancer cell lines were used for this study. Ultra-high-molecular-weight DNA was extracted from the samples, fluorescently labeled, and run on the Bionano Saphyr system. A total of 215 datasets, Inc.luding replicates, were generated, and analyzed successfully. Sample data were then analyzed using either disease-specific or pan-cancer-specific BED files to prioritize calls that are known to be diagnostically or prognostically relevant. Sensitivity, specificity, and reproducibility were 100%, 100%, and 96%, respectively. Following the validation, 14 cases and 10 controls were run and analyzed using OGM at three outside laboratories showing reproducibility of 96.4%. OGM found more clinically relevant SVs compared to SOC testing due to its ability to detect all classes of SVs at higher resolution. The results of this validation study demonstrate the superiority of OGM over traditional SOC methods for the detection of SVs for the accurate diagnosis of various hematological malignancies.

11.
Cancers (Basel) ; 15(22)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38001730

RESUMO

Karyotyping is a technique that has been used in clinical cytogenetic laboratories for more than 40 years [...].

14.
Surg Pathol Clin ; 16(2): 249-266, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37149359

RESUMO

Although pediatric hematopathology overlaps with that of adults, certain forms of leukemia and lymphoma, and many types of reactive conditions affecting the bone marrow and lymph nodes, are unique to children. As part of this series focused on lymphomas, this article (1) details the novel subtypes of lymphoblastic leukemia seen primarily in children and described since the 2017 World Health Organization classification and (2) discusses unique concepts in pediatric hematopathology, including nomenclature changes and evaluation of surgical margins in selected lymphomas.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Criança , Linfoma/diagnóstico , Linfoma/terapia , Leucemia Linfocítica Crônica de Células B/patologia , Linfonodos/patologia
16.
Brain ; 146(4): 1357-1372, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36074901

RESUMO

The vacuolar H+-ATPase is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the vacuolar H+-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients. In silico modelling suggested that the patient variants interfere with the interactions between the ATP6V0C and ATP6V0A subunits during ATP hydrolysis. Consistent with decreased vacuolar H+-ATPase activity, functional analyses conducted in Saccharomyces cerevisiae revealed reduced LysoSensor fluorescence and reduced growth in media containing varying concentrations of CaCl2. Knockdown of ATP6V0C in Drosophila resulted in increased duration of seizure-like behaviour, and the expression of selected patient variants in Caenorhabditis elegans led to reduced growth, motor dysfunction and reduced lifespan. In summary, this study establishes ATP6V0C as an important disease gene, describes the clinical features of the associated neurodevelopmental disorder and provides insight into disease mechanisms.


Assuntos
Epilepsia , ATPases Vacuolares Próton-Translocadoras , Humanos , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Epilepsia/genética , Trifosfato de Adenosina
19.
Cancer Genet ; 264-265: 50-59, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35366592

RESUMO

Gene fusions involving the neurotrophic receptor tyrosine kinase genes NTRK1, NTRK2, and NTRK3, are well established oncogenic drivers in a broad range of pediatric and adult tumors. These fusions are also important actionable markers, predicting often dramatic response to FDA approved kinase inhibitors. Accurate interpretation of the clinical significance of NTRK fusions is a high priority for diagnostic laboratories, but remains challenging and time consuming given the rapid pace of new data accumulation, the diversity of fusion partners and tumor types, and heterogeneous and incomplete information in variant databases and knowledgebases. The ClinGen NTRK Fusions Somatic Cancer Variant Curation Expert Panel (SC-VCEP) was formed to systematically address these challenges and create an expert-curated resource to support clinicians, researchers, patients and their families in making accurate interpretations and informed treatment decisions for NTRK fusion-driven tumors. We describe a system for NTRK fusion interpretation (including compilation of key elements and annotations) developed by the NTRK fusions SC-VCEP. We illustrate this stepwise process on examples of LMNA::NTRK1 and KANK1::NTRK2 fusions. Finally, we provide detailed analysis of current representation of NTRK fusions in public fusion databases and the CIViC knowledgebase, performed by the NTRK fusions SC-VCEP to determine existing gaps and prioritize future curation activities.


Assuntos
Neoplasias , Receptor trkA , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/uso terapêutico , Adulto , Biomarcadores Tumorais/genética , Carcinogênese , Criança , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/uso terapêutico , Fusão Gênica , Humanos , Neoplasias/diagnóstico , Proteínas de Fusão Oncogênica/genética , Receptor trkA/genética , Receptor trkA/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...